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FIESTA 2014  
Fission School Lectures  

FISSION CROSS SECTION THEORY 

J. Eric Lynn 

*** ADAPTED FOR PRINTING *** 
Pages marked (NOTES) are from supplemental document. Slide numbers referenced in 
notes have not been changed to account for merging of notes with slides. If there is 
confusion, please see original (unmerged) version of slides and notes.  

Lecture 1 Topics 

• Liquid drop Model 

• Quantum and nuclear structure modifications 

• Cross-sections and neutron resonances 

• Formal cross-section theory 

• Difficulties in liquid drop based model 

• Nuclear shell effects in deformation energy 
landscape 
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Discovery of Fission and Theory 

• Hahn and Strassmann established barium as one of the 
elements produced in absorption of slow neutrons by 
uranium (Naturwissenschaften, 27 (1939) 

• Meitner and Frisch interpreted this as the splitting of the 
compound nucleus into 2 almost equal parts and deduced 
that this was due to the heavy nucleus behaving like an 
electrically charged liquid drop (Nature, 143 1939) 

• Essential theory of Liquid Drop model developed by N. Bohr 
and J.A. Wheeler (Phys.Rev. 56 1939) 
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Binding energy v. Mass Number 

• Bethe- Weizsacker semi-empirical mass formula: 

 

 

•                    ↓          ↓                 ↓                    ↓                  ↓  

•             volume   surface    Coulomb            isospin         pairing 

•     (energy of classical charged liquid drop) 

• For liquid drop model of fission the surface and Coulomb 
terms are given their classical  dependence on drop shape 
(deformation) 

2/3 2 1/3 2

1 2 3 4/ ( ) /E c A c A c Z A c N Z A       

(Notes) 

References to mass formula: 
Weizsacker, C.F., Z.Physik, 96, 431 (1935) 
Bethe, H.A. and Bacher, R.F., 8,193 (1936) 



9/3/2014 

4 

Energy of charged liquid drop as function of deformation 

 

 

 

 

 

 

 

 

 

• Schematic diagram  of contours of potential energy of a charged liquid 
drop as a function of its two principal deformation parameters (above).  

• The broken line is the path of minimum energy as the drop elongates.  

• The potential energy along this path towards rupture into two equal parts 
(scission) is shown below the contour chart. 

• Key parameter deciding barrier height is the fissility parameter  

 

2 /Z A

(Notes) 

• Fissility parameter. When the Coulomb energy of a sphere equals twice its surface energy the sphere becomes critically 
unstable towards spheroidal deformation followed by splitting into two parts:  
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  For actinides x ≈ 0.7 to 0.8, Z
2
 /A is known as the Fissility parameter  
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Fission barriers in the Liquid Drop model 

Frankel and Metropolis (1947) made calculations of barrier heights as a 
function of the fissility parameter Z2/A 

 

 

 

 

 
 

 
Note: experimental data on barrier heights for Z2/A from 35-39 are in range 6.5 to 5.5 MeV 

 
 

 

 
 

(Notes) 

Reference: Frankel, S. and Metropolis, N., Phys.Rev. 72, 914 (1947)  
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Fission reaction rate theory in Liquid Drop model 

• Classical model :  

 Transmission coefficient TF = 1 if E > VF , otherwise zero. 

• Nuclear model: 

• Bohr and Wheeler  (1939) - many different possible states of intrinsic excitation as 
nucleus passes over barrier.  

 

 

 

 
  

 

 The transmission coefficient is 
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(Notes) 

• In the classical model fission will certainly occur if the excitation of the system is higher than the fission barrier energy V
F
 , but 

not if it is lower. Hence the transmission coefficient T
F
 = 1 if E > V

F
 , otherwise zero. 

• When we translate the model to the nucleus, we must recognize that there are many different possible states of intrinsic 
excitation in which the nucleus may pass over the barrier. In their 1939 paper Bohr and Wheeler used this concept of the 
‘transition state’ from chemical reaction theory as shown in the slide. The transmission coefficient is identified with the 
Fission Strength Function (ratio of fission width to level spacing) of nuclear cross-section theory. 

• N. Bohr and J.A. Wheeler, Phys.Rev. 56, 1939 
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Fission reaction rate theory contd. 

• The transmission coefficient             can be used directly in Hauser-
Feshbach theory in conjunction with the transmission coefficients for all 
the other channels for decay of the excited compound nucleus: 

 

 

 

• Quantal tunnelling of the barrier. The classical step function form is 
replaced by a penetration factor. This depends on the potential energy  
variation with deformation and the inertial tensor (which can also be 
deformation dependent). Hill-Wheeler formula (1953) for barrier with 
inverted harmonic oscillator form and constant inertial tensor: 
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(Notes) 

This expression for transmission coefficient with tunnelling  is for a single transition state of energy E’ (including barrier height).  
Hill, D.L. and Wheeler, J.A., Phys.Rev. 89, 1102 

Note that other shapes of barrier can give weak maxima and minima in the penetrability factor. 
For example, an inverted H.O. barrier with a constant "shelf" beyond the peak and little lower in energy 
gives a transmission coefficient showing weak maxima and minima: 
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Effects of angular momentum and parity on Barrier: 
Nilsson single particle level energies as function of deformation 

 

Protons 
Neutrons 

(Notes) 
Notes for Slide 9. 

These are eigenvalues of a nucleon in a spheroidal harmonic oscillator potential with parameters matching as far as possible those of a 

nucleus potential field. If 
1 2  are the circular frequencies of the minor axes and ω3 that of the major axis, the deformation 

parameter is defined as 

 
1,2 3
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The mean oscillator frequency is defined as 

 1 2 3

1
( )

3
       

The asymptotic quantum numbers 3Nn   labelling each nucleon orbital are the total oscillator number N, the number of quanta 

perpendicular to the symmetry axis, n3, the orbital angular momentum along the symmetry, Λ, and the component of total angular 

momentum along the symmetry axis Ω. A low-lying state of an odd-A nucleus can be a single quasi-particle, in which case the 

quantum number Ω is the projection of the total angular momentum on the symmetry axis, K. 

Note the areas of sparsity of levels near zero deformation for magic number of nucleons 82, 126 etc and similar, less conspicuous, 

areas at different nucleon numbers at higher deformations. 

 

Ref.: Gustafson, C., Lamm, I.L., Nilsson, B., Nilsson, S.G., Arkiv.Fysik,.36, 613 (1967) 
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Effects of angular momentum & parity; specialization energy and 
deformation dependent pairing energy 

 

• Ground state (Iπ , K) has e-e energy plus e(i,qp)  

• Lowest q-p state at greater deformation has different  q-p quantum numbers 

• .´.  State with same (Iπ , K) as ground rises above minimum energy envelope . 

• This  increase in energy is known as specialization  energy 

• Likewise, an odd-A  nucleus can have different pairing energy at the barrier. 

(Notes) 

• With other quantum numbers (Iπ, K) characterizing the system, as in an odd-A nucleus, specialization energy occurs at the 

barrier. This diagram shows, first, the potential energy for an e-e nucleus in its ground state (fully condensed at all 

deformations).  

 

• The next higher odd-A nucleus has a quasi-particle excited above the condensed e-e state. Its potential energy has additional 

excitation energy for its ground state I
π
 , K at normal deformation. As deformation increases the excitation energy crosses that 

for other states of different I'
π'
 , K' (see Nilsson diagrams) and will have different energy at the barrier owing to the 

specialization of its quantum numbers. 

 

• Likewise, if pairing forces are dependent on deformation an odd-A  nucleus can have different pairing energy at the barrier 

from that at the ground state and this affects the quasi-particle energy that is added to the e-e condensate: 

  

 
2 2

, ( )i qp i Fe       
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Concept of Individual Transition States & Effect on 
Fission Product Characteristics 

• The K  quantum number at the 
barrier: Projection of spin on axis of 
cylindrically symmetric nucleus 
couples with rotation R to give I 

• How angular relations of K,R,I and M 
may determine angular distribution 
of fission products. Example is for 
K=0  e-e nucleus and E1 photofission 

(Notes) 

Concept of Individual Transition States 

• Bohr and Wheeler had already used the idea that the nucleus could be in one of many different states of internal excitation a s it 

passed over the barrier and used the density of these for estimating the fission transmission coefficient. 

• Aage Bohr pointed out that an individual intrinsic state (now generally known as a transition state or fission channel) could  

have an influence on detailed fission properties.  

• He observed that in low energy photofission of  an e-e nucleus the fission products have a sideways angular distribution with 

respect to beam direction; this altered at higher energy, becoming more isotropic. He attributed this to the influence of the K 

quantum number in the lowest transition states. The ground state of the nucleus has J
π
= 0

+
, K=0. The E1 photon, which has 

spin projection on the beam direction M = ±1, puts the nucleus in a J
π
= 1

-
 state which passes over the barrier in a rotational 

state of the K
π

 

 = 0
-
 band. This changes at higher energy as a fission channel with K

π
 

 = 1
-
 opens up. 

• Thus it appears that the K quantum number of the transition state is frozen into the fissioning nucleus beyond the saddle. (See 

further discussion of this point by Barabanov  and Furman) 

• It follows that the individual transition states could affect other properties of the fission products, such as their dependence of 

overall yield on resonances in the excitation cross-section (see below). 
 

Bohr, A., Proc.Int.Conf.peaceful uses atom.en., Geneva,1955, 2, 220 (United Nations, New York, 1956) 

Barabanov, A.I. and Furman, W.I., Zeit. Phys.A357, 411 (1997) 
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Aage Bohr Transition States 

• Extended from Wheeler; largely 
speculative 

• Transition states above 1 MeV 

(Notes) 

This table is from a compilation given in J.E.Lynn, Theory of Neutron Resonance Reactions,p.396 (Oxford University Press, 1968) 

Analysis is based on a single-hump fission barrier. Much of the information in the Table comes from a discussion given by 

 Wheeler, J. A., in Fast Neutron Physics (eds. J.L.Fowler and J.B.Marion), v.2, p.2051 (Interscience, New York, 1963). 

Some estimates of Transition state energies come from experimental work referenced in Table 8.1 of Lynn (1968) 
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Features of Neutron Resonances 

• Resonances in low energy neutron cross-sections are the manifestation of 
the virtual states of the excited compound nucleus, through which it 
decays.  

• Resonances not generally  observed at higher energies (lack of resolution).  

• Are essential feature and basis of theory of nuclear cross-sections up to 
several MeV  excitation energy. 

• Form of isolated resonance at energy Eλ  (Breit-Wigner formula):  

 

 

 

• A channel width can be factorized into a reduced width and penetration 
factor:                         .  

• The integrated cross-section across the resonance is  

2

2 2( ) / 4

a b
ab

E E

 

 




 
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  

22c c cP  

2(2 / )ab a bD        

(Notes) 

Wigner, E.P. and Breit, G., Phys.Rev.49, 519 (1936) 

• Low energy neutron cross-sections are dominated by resonances that are the manifestation of the virtual states of the excited 

compound nucleus, through which it decays. Although the resonances cannot generally be observed at higher energies, because 

of lack of resolution, they remain the essential feature and the basis of the theory of nuclear cross -sections up to several MeV 

of excitation energy. 

 

        ● The average entrance channel width Г
λa

 increases with increasing energy of particle a because of increasing penetration factor. 
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Features of resonances contd. 

• For  capture cross-sections the exit channel width Гλb is replaced by the total 
radiation  width  Гλγ   

• Neutron widths  Гλn fluctuate greatly from resonance to resonance. The 
fluctuation is in the reduced width component.  

• The distribution of the reduced widths  has the Porter-Thomas form:  

 

 

 

• Total radiation widths are the sum of the partial  radiation widths for very many 
primary transitions. If these are mostly uncorrelated (as expected) the total 
radiation width should fluctuate very little from resonance to resonance. 

•  The fission width is also the sum of very many partial widths for different fission 
product pairs in many different states of excitation and angular momentum 
combinations . It is therefore expected to be constant from resonance to 
resonance. 

• This is at variance with the wide fluctuation observed experimentally.  This is 
explained by the A. Bohr concept of transition state or barrier channel; the many 
fission pair channel widths are correlated to the few open barrier channel widths. 

2
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 
 

(Notes) 

The reduced width amplitude γ
λn

  is the projection of the CN wave function amplitude on the channel wave function at the channel 

entrance and is expected to have zero-mean gaussian distribution owing to the highly complicated wave function expected when the 

compound nucleus is at high excitation. This transforms into the Porter-Thomas distribution for the reduced widths. 

 

Porter, C.E. and Thomas R.G.,Phys.Rev.104, 483(1956) 
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Average cross-sections: Hauser-Feshbach theory 

• The integrated cross-section over a Breit-Wigner resonance is divided by the level 
spacing D to obtain the local average cross-section:  

 

 

 

        where the transmission factors  are: 

 

 

   

  and                          . With full account of target spin I, projectile spin s, orbital 
angular momentum,      , coupled to total angular momentum J, the full Hauser-
Feshbach expression is  

  

2 /ab a bT T T 

2 /c cT D 

cc
T T

'
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T TJ

i I T
 

  

     




 
   

(Notes) 

Hauser, W. and Feshbach, H., Phys.Rev.87, 366 (1952) 

 

The Hauser-Feshbach theory is the formal application of Bohr's theory of the Compound Nucleus and its principle of independence of 

formation and decay applied to the calculation of reaction cross-sections. The transmission coefficient is the probability that the CN 

wave-function will (i) find itself in the configuration of channel wave function c at the channel entrance, and (ii) will overcome mis-

matching wave-number factors and potential barriers in the channel. This corresponds to the factorization of a partial width into a 

reduced width and penetration factor (slide 13). 
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Formal cross-section theory; R-matrix theory 

• To understand properly the effect of CN levels on the cross-sections  we need a 
formal microscopic theory of nuclear reactions. There are several approaches to 
this. Here, we adopt the R-matrix theory (Wigner and Eisenbud). 

•                                                           OUTLINE 

• Wave function for plane wave travelling with velocity v: 

 

 

        plane wave  in z dirn.                 expansion in polar co-or. system      

k (=             is wave no. of neutron-target system, Ylm are spherical harmonics. 

For neutrons, asymptotic forms of incoming, outgoing waves at large distances r are 

 

 

 

Nuclear forces in compound system of target +neutron  change amplitudes of 
outgoing waves and  produce outgoing waves of different kinds. 

Amplitudes of outgoing waves in this system are denoted by   collision matrix  element 

1/2

0

0

exp( ) (2 1) [ ( ) ( )] ( , )ikz i I kr O kr Y  




 

1/ )

exp[ (1/ 2) ]I ikr i    exp[ (1/ 2) ]O ikr i  

'ccU

(Notes) 

Refs.: Wigner, E.O. and Eisenbud, L., Phys. Rev.71, 29 (1947) 

Lane, A.M. and Thomas, R.G., Rev.Mod.Phys.30, 257  (1958) 

• Cross-section for a beam of neutrons  to produce reaction r is  σr = no.of events of type r per unit time per nucleus /neutron 

flux 

• Wave function for unit flux plane wave travelling with velocity v and incorporating state of excitation of Target nucleus (and 

possibly projectile)  α and channel spin s I i  with projection ν on z-axis: 
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


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Internal region and channels in nuclear configuration space 

(Notes) 

This schematic diagram attempts to explain the concept of channels in formal R-matrix theory and the modifications required to take 

into account the Aage Bohr concept of transition states when fission has to be treated. The essential feature of R-matrix theory is that 

there is an internal region of configuration space where nuclear forces operate; there are no significant nuclear forces outside this 

internal region except those which can be characterized as a potential field acting on a single particle. This internal region corresponds 

to the Compound Nucleus. Outside the internal region, configuration space is broken up into channels in which the system consists of 

a particle (a nucleon or composite particle such as an α-particle) and a residual nucleus. The latter is in a discrete state, which may be 

its ground or an excited state. (If the particle is composite it too may be in an excited state). The particle and residual nucleus carry 

their own angular momentum and parity and have a relative orbital angular momentum  l. All these characteristics are wrapped up into 

a single function φc while the relative radial motion of an outgoing wave at very large separation is given in the factor exp[ikcrc-½ilcπ]. 

Thus the channel wave-functions are in the form 
0 exp[ / 2]c c cU ik i   . 

Real energy independent boundary conditions are set at channel entrances from the internal region. The discrete eigenfunctions Χλ 

with eigenvalues Eλ denote the solutions of the nuclear hamiltonian within the internal region.  

The lower part of the diagram shows the features of configuration space required to describe fission. The main degree of freedom here 

is the elongation, β, of the compound nucleus towards the scission point. The first stage of this comprises the Aage Bohr transition 

states at the saddle-point. The "channel" wave functions are composed of the wave-function Φ(β) for the deformation β and the state 

of intrinsic excitation χμ. Beyond these saddle-point channels the nucleus enters a region where greatly increased internal excitation 

energy becomes available to produce highly complicated intrinsic state mixing. At the extreme deformation of this part of the internal 

region - the scission point - the entrances of the formal fission product channels are found. These are described in a similar way to the 

particle channels. 
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Wavefunctions in regions of configuration space 

• Nuclear forces in Internal Region cause outgoing waves in other channels c’. 
Amplitudes  denoted by collision matrix elements Ucc’ , (c  for entrance).  

 

• External region  wavefunction : 

 

       

 I and O  are incoming and outgoing wave functions generalized to specific 
channels by incorporating intrinsic excitation and angular momentum couplings    

      

• The cross-section is 
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(Notes) 

• Nuclear forces in Internal Region affects outgoing waves. New outgoing waves appear in other channels c’. Their amplitudes 

are denoted by collision matrix elements U
cc’ 

, c denoting the entrance channel with angular momentum coupling, parity and 

target state of excitation. In the external region the wavefunction is 
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I and O  are incoming and outgoing wave functions generalized to specific channels by incorporating intrinsic excitation and angular 

momentum couplings         

• The cross-section is 
                                                                                                    

 
2

' ext plane| ' |cc c     

• The cross-section integrated over angle is 
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Internal region wavefunction 

• Wave function for Internal Region 

 

 

 

• Evaluation of the collision matrix is made by matching logarithmic derivatives of 
wavefunction  of internal region to those of outgoing wavefunctions in channels  

• Collision matrix is  

 

                                   

 

• The R-matrix is the central quantity here: 
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(Notes) 

• A  complete set of discrete eigenstates is set up for the internal region by placing real boundary conditions at the channel 

entrances and solving the full nuclear hamiltonian. These are denoted by   Eλ   and their wavefunctions by  Χλ . The internal 

wavefunction is expanded accordingly 

 

 int 


    

• Evaluation of the collision matrix is made by matching logarithmic derivatives of wavefunction  of internal region to those of 

outgoing wavefunctions in channels (latter denoted by  Lc =Sc+iPc ; the real part S
c
 is the shift factor, P

c 
 is the penetration 

factor containing the effects of potential barriers in channels). 

• The expression for the collision matrix is  

•                                                   

 
1/2 1 * 1/2{ } {   U = P 1- R(L - B 1- R(L B)}P  

• The R-matrix is the central quantity here. It contains values (projected on to spin and excited state of the channel 

function) of internal eigenstates at channel entrances a
c 
 ; these are denoted γ

λc 
 . They are the reduced width amplitudes. 

B and Ω are diagonal matrices containing the boundary conditions and phase factors  at the channel entrances.  

• The R-matrix element for entrance channel c, exit channel c’ is 
                                                                                                           

 '
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(Notes - continued) 

Single-level formula: If only one level λ is retained in the sum, the inversion of (1-RL)
 

 can be done exactly and the Breit-Wigner 

formula is obtained  

                                                                                 

 
( ) '( ' ')2 ' '

' 2 2
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    
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with level shift      

                        

 
2( )c c cc

S B     

partial widths 
2

" " "2c c cP    and total width "

"

c

c

    . The effect of spins (target and projectile spins I, i and orbital angular 

momentum l ) coupling to total angular momentum J is contained in the spin-weighting factor g(J). 

Note the factorization of partial widths into nuclear component γλc
2
 and a channel component, the penetration factor, which contains 

the effect of potential variations in the channel region e.g., for fission, the Hill-Wheeler factor. 
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Form of the R-matrix and the single-level approximation 

• The R-matrix element for entrance channel c, exit channel c’ is 

 

 

 Single-level Breit-Wigner formula: 

  One level λ retained in the sum:  inversion of (1-RL) -1 is exact 

 

 

 

•                                                  is the level shift 

 

                                      are the partial widths and the total width is 

 

Note factorization of partial widths into nuclear component              and a channel 
component, the penetration factor, which contains the effect of potential 
variations in the channel region e.g., for fission, the Hill-Wheeler factor. 
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(Notes) 

The more general form, when the boundary conditions are not set equal to the shift factors, is: 

                                        

 '
'

/ 2

c c
cc e eE E

 

   

 


   
R  

Δ
λ

e 

 being the contribution to the level shift from the eliminated channels. 

Note: the level shift, both here and in the single-level approximation above, can be made zero at a specific energy by equating the 

boundary conditions B
c
 to the shift factors S

c
. Since the energy variation of S is usually very small over the range of a level 

spacing D the resonance is thus identified with the eigenstate, giving physical content to the formal theory.  
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Reduced R-matrix approx.: Reich-Moore application 

• Useful for limited number of explicit channels.  Eliminated channels must have 
small partial widths and be uncorrelated. Reduced  R-matrix: 

 

 

• Reich and Moore :  radiation channels are all eliminated, thus identifying             as 
the total radiation width           :   viable for treatment of fission using Aage Bohr  
saddle-point channel concept. 

• Example of 2-channel reaction with 3 levels included. Note some asymmetry in 
resonance shapes and marked interference between the individual level terms. 

 

e




'
' 1

2

c c
cc

eE E i

 


 

 

  
R

(Notes) 

Ref. Reich, C.W. and Moore, M.S., Phys.Rev. 111, 929 (1958) 
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Reduced neutron widths 
• Possible expansion of Internal Eigenstates 

                                         Χλ = Σcp Cλ,cp φc up(rc ) 

      where φc  is state of internal excitation and up is state of single neutron motion 
in field of residual nucleus (with wave number K). 

      Incident neutron channel is  

                                                                                                        

 Value at channel radius r0 = a0 is the reduced neutron width amplitude: 

                                           γλ,0q ̴  Cλ,0q uq(a0) 

• For high density of states (CN states) expectation value of Cλ,0q
2 ̴  Dλ/Dsp 

 

●   Reduced neutron width of single particle state is                  . Hence for strong 
mixing  

 

 Ratio                       is neutron strength function, usually given in form (for s-waves) 

 

 

2 2/ Ma

    2 2 2

0/ ( / /n spMa D D D Ka  
2 /n D  

0 2 2

0/ 2 (1 ) / 2 (1 ) /n n nD P eV D k eV a D   

0 0( )qu r
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Fission widths and strength functions: 
Effect of target spin on fission strength 

233 U : Iπ = 5/2+  CN :  Jπ = 2+  and 3+  
237 U : Iπ = 1/2+  CN :  Jπ = 0+  and 1+  

 

(Notes) 

In the case of odd-A target nuclei the target nucleus spin can have an important effect on the average fission width of the slow neutron 

resonances. For example, the target nucleus 
233

U (I
π
 = 5/2

+
) has resonances with spin J

π
 = 2

+
, 3

+
 in its neutron cross-section. The 

lowest transition states at the barrier are; 

 a) for J = 2 

 2+  -  a member of the "ground" state rotational band, 

 2+  -  the gamma vibrational state lying at several 100 keV, but still well below the neutron separation energy 

 b) for J = 3 

 3+  -  a member of the rotational band built on the gamma vibration (still below the neutron separation energy) 

. 

 By contrast, the target nuclei 
239

Pu (I
π
 = 1/2

+
)  and 

237
U have resonances with spin J

π
 = 0

+
, 1

+
 in their neutron cross-section. The 

lowest transition states at the barrier are; 

 a) for J = 0 

 0+  -  the "ground" state rotational band (these resonances are expected to have large fission widths), 

 b) for J = 1 

 1+  -  Either a combination of the bending vibration and the mass-asymmetry vibration or a 2-quasi-particle state. Both are 

expected to be above the neutron separation energy, giving these resonances unusually small fission widths for a fissile nucleus. 
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Difficulties in Liquid Drop based model 

•  Systematics of barrier heights . 

• Highly asymmetric mass yields. 

• Structure in fission cr.secn. of non-fissionable nuclei:  e.g.  James et al (1972) 

 

(Notes) 

• For a quarter century or so fission theory depended on a qualitative version of the liquid drop model, with quantal and nuclear 

physics concepts incorporated. 

• The difficulties so far met with in the liquid drop theory tended to be glossed over. These were of course the systematics of 

barrier heights and also the long-standing problem of highly asymmetric mass yields leading to questions about the pathway 

through the potential landscape from saddle to scission. In the 1950's Fong had developed a theory which seemed to offer a 

way to explain this, relying on shell effects in the level densities of the incipient fission products but could not quite be made to 

work. This was probably one of the first attempts to put shell effects into fission theory. 

 But with great improvements  in experimental techniques further cracks began to appear in the LD edifice.  

  1960's  higher energy resolution measurements of  fission cross sections of non-fissionable nuclei showed signs of structure, 

dips following rising cross-sections. Wheeler explained these asdue to inelastic scattering competition as successive levels in 

the residual nucleus became energetically available. This explanation failed when new measurements by Jones  (1965) at Harwell 

showed peak with a 4:1 ratio to the following dip. 

 High resolution measurements by James et al showed this ratio to be about 10:1 

Fong, P., Phys.Rev.102, 434 (1956) 

Wheeler, J. A., in Fast Neutron Physics (eds. J.L.Fowler and J.B.Marion), v.2, p.2051 (Interscience, New York, 1963). 

James, G.D., Lynn, J.E. and Earwaker, L. Nucl.Phys., A189, 225 (1972) 
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Spontaneously Fissioning Isomers (Flerov and Polikanov) 

• Search for new elements – activity attributed to Am-242 

• Properties (very unlike normal isomers, which have low E, 
high I) 

• --- ½-life ≈ 14ms 

• Low spin 

• High excitation energy  ≈ 3 MeV  

 
 

 

(Notes) 

Flerov, G.N. and Polikanov, S.M., Compt. Rend.Cong.Int.Phys.Nucl.,1, 407 (Paris, 1964). 

Many other spontaneously fissioning isomers were subsequently discovered, mainly in isotopes of plutonium, americium and curium. 
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Narrow Intermediate Structure in Fission cross-sections 

• Discovered in resonance region by Migneco & Theobald and Paya et al (1968) 

(Notes) 

Unlike slide 24, which is for a neutron energy region covering several 100keV and totally washes out the underlying resonance fine 

structure, the cross-sections of 
240

Pu shown here covers a few 100eV and shows the strengths of all the individual resonances 

comparing total (proportional to the neutron width) above with fission strength (depending on both neutron and fission width) (below). 

The scatter in the strengths of the total cross-section resonances is due to the Porter-Thomas distribution. The tight clustering of 

fission strength, the clusters being separated by several hundred eV, cannot be attributed to a stochastic process.  

Migneco, E. and Theobald, J.P., Nucl.Phys. A112, 603 (1968) 

Weigmann, H., Z.Phys. 214, 7 (1968) 

A similar striking situation was discovered for 
237

Np about the same time. 

Paya, D., Blons, J., Derrien, H., Fubini, Michaudon, A. and Ribon, P., J. Phys.(Paris) 29, 159 (1968) 
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Shell effects in deformed nuclei – Strutinsky theory 

• Levels of a spheroidally deformed harmonic potential (no spin-orbit coupling) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

       (from Nix (1972)) 

(Notes) 

Note the significant "shell" gaps esp. at major to minor axis ratios 3:2, 2:1 and 3:1 

Nix, J.R. Ann.Rev.Nucl.Sc..22, 65 (1972) 
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Nilsson diagrams: deformed HO + spin-orbit coupling 

                             Protons                             Neutrons 

(Notes) 

This is the same as slide 9. However, now note regions of sparse single-particle level density at deformations of about 0.25 and 0.4. 
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Strutinsky Theory:  Liquid drop + shell correction 

               Shell correction term 
Shell corrn. added to liquid drop energy 

The minimum marked II offers an 
explanation for spontaneously fissioning 
isomers 

 

(Notes) 

Strutinsky, V.M., Nucl.Phys. A95. 420 (1967) 
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Barrier height dependence on Z2/A 

                            Low Z2 /A                             High Z2 /A 

(Notes) 

The variation of the shell correction on deformation is not expected to change much with significant changes in Z and N, whereas the 

liquid drop energy varies strongly both in the height of the barrier and its position with changing Z
2
/A. 
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Effect on Fission transmission coefficient 

 

 

 

 

 

 

 

 

 

 

TA , TB are transmission coefficients of inner and outer barriers separately 

• This is the fission transmission coefficient of the Statistical Model:                                           

 / ( )F A B A BT T T T T 

(Notes) 

Bjornholm, S. and Strutinsky, V.M., Nucl.Phys.A136 1 (1969) 
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Lecture 2 Topics 

• Configuration space for R-matrix theory incorporating fission 

• Wave functions in deformation space 

• Formal exposition of intermediate structure 

• Fine structure properties within intermediate structure 

• Statistical fluctuations and average cross-sections 

• Transition states at inner and outer barriers 

• Examples of cross-section calculations for Pu isotopes 
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Configuration Space: choice of channel boundary 

 

 

(Notes) 

The region associated with increasing elongation is now elaborated to include a secondary well and an outer barrier with Aage Bohr 

transition states; at the outer barrier these are taken as the class-II fission channel boundaries with which the formal fission product 

channel amplitudes are correlated. The transition states at the inner barrier govern the coupling of the class-II states in the secondary 

well to the class-I states in the main part of the internal region, the primary well of the elongation variable. 
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No nuclear interactions in Secondary Well; 
channel boundary at inner saddle point 

• Transmission coefficient • Shift and penetration factors 

(Notes) 

Residual  nuclear forces remain after the potential of the secondary well and beyond is subtracted. If these were negligible, we could 

place the channel boundary at the inner barrier. The barrier now consists of the outer barrier, the secondary well and inner barrier. The 

transmission coefficient through this now shows resonance features that are  undamped at the peaks but have widths that depend 

strongly on the excitation energy available. The logarithmic derivative of the elongation channel wave-function, giving the shift and 

penetration factors of R-matrix theory, has a dispersive character as it traverses the transmission resonance peaks. An example is 

shown for one "resonance" in the r.h. diagram. This logarithmic derivative provides the intermediate structure for the fission widths of 

the fine structure  resonances from the main central part of the internal region. 

Lynn, J.E., J.Phys. A6, 542 
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Vibrational wave functions for Double well; 
discrete states with real bdy.condn.at outer barrier 

(Notes) 

Real boundary conditions are imposed at the outer peak. The discrete eigenstates of the vibrational hamiltonian that have eigenvalues 

lower than the inner peak have either large amplitude in the primary well and small amplitude in the secondary well or vice versa 

(unless there is an accidental degeneracy). The former states are designated class-I  vibrational states, the latter class-II. Eigenstates 

with higher energy should all have significant amplitude in the secondary well and therefore be included with the class-II set. 
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CN states in double well 

(Notes) 

Compound nucleus states can be considered as combinations of vibrational states and states of internal excitation. The main 

contribution to the density of the CN states comes from the internal excitations. Most excitation energy is available for these when the 

vibrational component is one of the lowest class-I vibrational states. Hence these, the fine structure resonance levels in first 

approximation, are considered to be localized in the primary well and are known as class-I CN states. States that have class-II states as 

their major vibrational component are much less dense, because of the much lower internal excitation available are are known as 

class-II CN states. 

If the inner barrier were infinite these classes would be exact. In fact there is mixing of the two sets across the inner barrier. This 

causes the mixing of the class-II CN states into the class-I fine structure CN states as shown in the lower part of the slide. 
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Formal exposition of Intermediate Structure 
 

•   
• Hamiltonian  
                                                H = Hintrinsic + Hdef + Hcoup 
 
• Solutions of intrinsic part for fixed deformation β0 denoted by   χμ  
•                                                                                   

• Solutions of deformation part are vibrational-type functions in the 
deformation variable β: 

              Φν(β)          (eigenvalues  ε) 
 
• Eigensolutions of H are expanded: 
  
                                                  Xλ = Σλ Cλ,μνχμΦν 

 

(Notes) 

The hamiltonian of the internal region is written schematically in three components 

 

 
int 0( , ) ( ) ( , )def coupH H H H        

         The solutions of the intrinsic part (at a fixed deformation β0) are denoted by χμ (ξ). where ξ denotes the set of internal degrees of 

freedom and eigenvalues are denoted by Eμ 

 The solutions of the deformation part are vibrational-type functions Φ
ν
(β) in the deformation variable β  and eigenvalues εν   

(These are defined as discrete states with suitable real boundary conditions applied). The eigensolutions of the full hamiltonian 

are expanded: 

                                                                                        X
λ
 = Σ

λ
 C

λ,μν
χ

μ
Φ

ν
  

 

 (A full exposition may be found in Bjornholm, S. and Lynn, J.E., Rev.Mod.Phys., 52, no.4 (1952) p.754) 
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Intermediate structure continued 

• Two classes of basis states: 

• Class I: with negligible vibrational amplitude in 2y well:     μ'νI‘ 

• Class II: main component of vibrational amplitude in 2y well:      μ´´νII´´ 

 

• Solve  Scrodinger eqn. for the Hamiltonian with the limited bases of the two 
classes.  

• The Hamiltonian matrix elements for the first basis are 

 

                       <νIμ│ Hcoup│νI'μ'> = (εν(I)+Eμ)δν(I)μ,ν'(I)μ' + <μνI│ Hcoup│ μ'νI'> 

 

      This Hamiltonian can be diagonalized  to give class-I eigenstates with wave function 
expansions 

                                                 Xλ(I) = Σμν(I) < λI│ μνI>χμΦν(I) 

• and eigenvalues  Eλ(I) 

 

 

(Notes) 

• The characteristics of the vibrational functions (see Slide 36) suggest that the basis states can  be separated into two classes: 

 

• Class I: with negligible amplitude in 2y well:     μ'ν
I
' 

• Class II: with main component of amplitude in 2y well:      μ´´ν
II
´´  

 

• We can now solve the Scrodinger eqn. for the Hamiltonian with the limited bases provided by these two classes of vibrational 

wave functions. The Hamiltonian matrix elements for the first basis are 

 

                       <ν
I
μ│ H

coup
│ν

I
'μ'> = (ε

ν(I)
+E

μ
)δ

ν(I)μ,ν'(I)μ'
 + <μν

I
│ H

coup
│ μ'ν

I
'> 

 

      This Hamiltonian can be diagonalized (conceptually) to give the class-I eigenstates with wave function expansions 

 

                                                 X
λ(I)

 = Σ
μν(I)

 < λ
I
│ μν

I
>χ

μ
Φ

ν(I)
  

 

and eigenvalues  E
λ(I)
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Intermediate structure continued 

• Similarly, for the class-II basis set: 

       The Hamiltonian matrix elements are 

 

        <νIIμ│ Hcoup│νII'μ'> = (εν(II)+Eμ)δν(II)μ,ν'(II)μ' + <μνII│ Hcoup│ μ'νII'> 

 

      and we diagonalize it to give the class-II eigenstates with wave function expansions 

 

                                          Xλ(II) = Σμν(II) < λII│ μνII>χμΦν(II) 

 

       and eigenvalues  Eλ(II) 
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Properties of Class-I eigenstates. 
 

• These contain the zero-phonon vibrational state Φ0 in their eigenfunctions. Hence, 
the ground state and lowest excited states of the Compound Nucleus are included 
in the class-I set. 

 

• Maximum available excitation energy for constructing intrinsic states. Hence, large 
level density. 

 

• Φ0 essential for CN component for reduced neutron width amplitude(for neutron 
emission leaving residual nucleus in ground state). Also for inelastic scattering. 

 

• Primary radiative transitions to low-lying states. 

 

• In fact, the class-I states have most of the characteristics of the CN states we see as 
neutron resonances, except that they have no reduced fission width. 

 

(Notes) 

• Class-I states contain the zero-phonon vibrational state Φ
0
 in their eigenfunctions (as well as the lowest few phonon states 

above this). Hence, the ground state and lowest excited states of the Compound Nucleus are included in the class-I set. 

• This element of a configuration also allows maximum available excitation energy to be used for constructing intrinsic states 

(particle degrees of freedom, other collective modes). Hence, class I  states have high density. 

• Φ
0
  is essential for CN component for reduced neutron width amplitude (for neutron emission leaving residual nucleus in its 

ground state). Also for inelastic scattering. 

• The class-I states have primary radiative transitions to low-lying states. 

• In fact, the class-I states have most of the characteristics of the CN states we see as neutron resonances, except that they have 

no reduced fission width. 
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Properties of Class-II eigenstates 

• Class-II level density is much lower. 

 

• No reduced neutron width ; cannot be excited by neutron bombardment. 

 

• From the higher class-II vibration components,  significant amplitude at the outer 
barrier and hence fission widths. 

 

• Lowest state in spectrum is spontaneously fissioning isomer. Radiation from higher 
class-II states terminates here.  No "cross-over" radiation. 

 

 

(Notes) 

• Lowest class-II vibration in secondary well is some 2 - 3 MeV higher than the ground state in the primary well. Hence the 

available energy for intrinsic excitation is much lower, giving a much lower density of class-II states. 

• Having no Φ0 component the class-II states have no reduced neutron width and hence, in their pure form cannot be excited by 

neutron bombardment. 

• On the other hand they have, from the higher class-II vibration components,  significant amplitude at the outer barrier and 

hence have fission widths. 

• The lowest state in their spectrum is the spontaneously fissioning isomer. Hence, radiation from higher class-II states 

terminates at the isomer. Negligible overlap with class-I states prevents "cross-over" radiation to class-I states 
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Final Diagonalization of Hamiltonian 

• Full  Hamiltonian: 

 

• E(λI)                  0                       0     ……    │  <λI| Hc |λII>    <λI| Hc |λ’II>   ………. 

      0                 E(λ’ I)                 0     …….   │  <λ’I| Hc |λII>   <λ’I| Hc |λ’II>  ............ 

      0                    0                  E(λ”I)   . ..       │  <λ”I| Hc |λII>   <λ”I| Hc |λ’II>  ……..                              

           0                     0                      0     ……     │ 

           :                                                                  │ 

           0                     0                      0                  │   <λ””I| Hc |λII> ……. 

▬▬▬▬▬▬▬▬ ▬▬▬▬▬▬▬▬ ▬▬▬▬▬▬▬▬ ▬▬▬▬▬▬▬▬▬▬ 

<λI| Hc |λII>   <λ’I|  Hc |λII>   <λ”I| Hc |λII>  .. │          E(λII)                   0                  0  

<λI| Hc |λ’II>  <λ’I| Hc |λ’II>   <λ”I| Hc |λ”II>   │            0                    E(λ’II)              0  

.  …………………………………….…………….     │            0                         0            E(λ”II)    

             :                    :                      :                   │ 

 

Matrix element core      <νI |Hc| νII >     is very small 

(Notes) 

• We have now effectively partitioned the full Hamiltonian matrix thus: 

         

                                                               H
I,I

           H
I,II

  

                                                               H
II,I

           H
II,II

  

 

                                                                

                            with the sub-matrices H
I,I 

, H
II,II

 already diagonalized. 

  

• The off-diagonal sub-matrices have matrix elements (for H
I,II

 ) 

                                                              

                 <λ
I
│ H

coup
│λ

II
'> =Σ

μν(I), μ'ν'(II) 
< λ

I
│ μν

I
><μν

I
│ H

coup
│μ'ν

II
'>< μ'ν

II
'│ λ

II
'>  

       (and similarly for H
II,I)

) 

• Because of the weak spatial overlap between the vibration modes these mixing elements between Class I and II CN states are 

small in the excitation region near and below the fission barrier.  Perturbation and similar techniques can be used to elucidate 

the properties of the final states of the full Hamiltonian. 
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Very weak mixing: perturbative treatment 

• 238U (n,f): 

• very small neutron width; Γγ≈7meV 

 (average radiation width  ≈ 22meV) 

 

• 240Pu (n,f): 

• 2 strong fission resonances (total 
fission width ≈ 3.5 eV 

• Accidental degeneracy of  class-II 

state with very close class-I 

(Notes) 

Reference for 
238

U: DiFillipo, F.C., Perez, R.B., de Saussure, G., Olsen, D.K. and Ingle, R.W., Nucl.Sci.Eng.,63, 153 (1977)  

Reference for 
240

Pu:  Auchampaugh, G.F. and Weston, L.W., Phys.Rev., C12, , 1350 (1975) 
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Moderately weak coupling: 
 

• The mixing of a single class-II state with many class-I level can be solved exactly.  

                                                           Γλ(II), C  γ2
λ(II), F 

                              2πγ2
λ,F /DI = ——————————— 

                                                 (Eλ(II) - Eλ)
2 + (½Γλ(II), C)2 

 

The “coupling width” across the inner barrier A: 

 

 

 

which we have identified with the transmission coefficient across the inner barrier TA.  

  

Coupling to the fission continuum 

• Lorentzian eqn. above is for R-matrix reduced widths.  Fission widths of 
resonances can be different owing to coupling to the continuum. 

2

,

2

2

C II
II C A

I

H D
T

D




  

(Notes) 
Specialization of the exact solution for uniform coupling matrix element we obtain  

       Lorentzian profile of R-matrix state reduced fission widths: 

 

2 2

2

2 2 2 2 2( ) /
II

II

c f

F

c I c

H

E E H D H





 







  
 

       The half-width W is known as the coupling width: 

                             Γ
λ(II), C

 = 2W = (2πH
2

/D
I
)√(1 + D

I

2

/π
2

H
2

)   (≈ 2πH
2

/D
1
 for D

I
 /πH>>1) 

       which lets us write 

 

2

2

2 2
2 /

( ) ( / 2)
II

II II

c f

f I

c

D
E E

 



  







  
 

• The formula for eigenvalues is: 

                                                      

 

2

cot
II

c

I I

H E
E E

D D


 

  
    

 
 

      The spacing of eigenvalues becomes closer as they approach the class -II eigenvalue. Therefore. The strength function, the locally 

averaged reduced fission width to spacing ratio turns out to have a Lorentzian with half-width exactly  
2 /c IH D                                                                                   

 Thus we have for the “coupling width” across the inner barrier A: 

                                                                              

 

2

,

2

2

c II
II c A

I

H D
T

D




    

 which we have related to the transmission coefficient across the inner barrier T
A
.  
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Coupling to the fission continuum 

• Lorentz profile with width             is for  reduced fission widths of R-matrix  states.   

 

• The coupling with the fission continuum has now to be included to obtain profile 
for the fission widths of the fine structure resonances. 

• If 

 

 R-matrix fission width profile approximates to intermediate resonance profile.  

 

 If R-matrix fission widths                              appreciably overlap, solution of  R-matrix 
equations  not obvious. 

 

 Example: 

II IIF C  

22f f fP  

II c

(Notes) 

• The intermediate resonance profile for the reduced fission widths of the R-matrix eigenstates, as shown above, is not yet the 

profile for the fission widths of the fine structure resonances. The coupling with the fission continuum has now to be included, 

through the calculation of the collision matrix. 

• If the class-II state fission width is much smaller than its coupling width, 
II IIf c   , 

 that profile does indeed approximate to the intermediate resonance profile, but if the R-matrix fission widths  
22f f fP                                

in a single saddle-point channel appreciably overlap, the solution of the  R-matrix equations can give surprising results. 

 Ref.: Lynn, J.E., Phys.Rev.Lett., 13, 417 (1964) 

                ,,        , Proc. Int. Conf. Nuclear Reactions with Neutrons, Antwerp, 1965 (ed. M. de Nevergnies et al), p.125 (North 

Holland, Amsterdam, 1966) 
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2-level, 2-channel cross-section 
(neutron entrance channel, single fission channel) 

2 Breit-Wigner  terms added (red and 
blue; total shown in green) 

R-matrix calculation: note energy scale is 
same, cross-section scale increased x10 
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S-matrix theory 

• S-matrix formalism expands the collision matrix about its poles in the complex 
energy field: 

 

 

• The quantities G are effectively partial width amplitudes of the poles.  

• E is the complex energy and the poles are at the complex energies 

 

 

● Advantages: parameters of poles (e.g. pole width, partial width amplitudes) 
directly reflect characteristics  of resonances in cross- section 

 

● Disadvantages: S-matrix theory is not unitary.  

 Statistical distributions of partial widths change with strength function. 

/ 2H H H

m m mE i  E

'
' ' '

mc mc
cc cc cc H

m m

G G
S U   

E - E

(Notes) 

• Mainly developed by Humblet and Rosenfeld in the 1960s, this formalism expands the collision matrix (U
cc’

 = S
cc’

 + δ
cc’

 ) 

about its poles in the complex energy field: 
                                                                  

 ' '
' ' '

'

exp[ ( )]

( )

c c c c
cc c c cc H H

c c

G G i
S i

E i

  
  

  
P P Q

P P E -
 

 The P  factors describe threshold behaviour in the channels and the ξ terms are pole phase factors. The quantities G are 

effectively partial width amplitudes of the poles. E  is the complex energy and the poles are at the complex energies 

 

 / 2H H HE i  E  

                                                                                  

 

 Ref.: Humblet, J. and Rosenfeld, L., Nucl.Phys. 26, 529 (1961) 

 

● Advantages: parameters of poles (e.g. pole width, partial width amplitudes) directly reflect characteristics  of resonances in 

cross- section 

● Disadvantages: unlike R-matrix theory, S-matrix theory is not unitary.  

 Statistical distributions of partial widths change with strength function.  
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Transforming R-matrix parameters to S-matrix parameters 

• U and R matrices are extended into 
the complex energy field. S-matrix 
poles can be found analytically in 
certain cases or generally by 
numerical methods. 

• 2-level case: analytic – as R-matrix 
levels become closer, poles repel 
each other in imaginary direction. 
Two broad R levels become a narrow 
resonance and a broad resonance. 

 

• “Broad” class –II R-matrix state: 

                                and          

Fine structure resonance fission widths  

 

 

 

 Neutron widths  & resonance 
energies are close to class-I values. 

• Remaining class-II fission strength is 

                      [1 - Γλ(II),C/ Γλ(II),F] Γλ(II),F   

 contained in one broad pole (width ~ 

Γλ(II)F ) with weak neutron width 
(Γλ(II),C<Γλ(I),n>/ Γλ(II),F) underlying the 
Lorentzian group.  

( )II F ID ( ) ( )II F II C  
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(Notes) 
• U and R matrices are extended into the complex energy field. S-matrix poles can be found analytically in certain cases or 

generally by numerical methods.  

• 2-level case: analytic – as R-matrix levels become closer, poles repel each other in imaginary direction. Two broad R levels 

become a narrow resonance and a broad resonance. 

• For a “broad” class –II R-matrix state (
II f ID  and 

II IIf c    

    the fission widths of fine structure resonances (from poles): 

  

•                                                                
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 Ref.:  Lynn, J.E., J.Phys. A6, 542 

 

      

Neutron widths resonance energies are close to their class-I values. 

• Remaining class-II fission strength is 

                                                                        [1 - Γ
λ(II),C

/ Γ
λ(II),F

] Γ
λ(II),F

   

• This is contained in one broad pole (width ~ Γ
λ(II)F

 ) with weak neutron width (Γ
λ(II),C

<Γ
λ(I),n

>/ Γ
λ(II),F

) underlying the Lorentzian 

group.  

•  

• This suggests a hypothesis for a general formula: 

•                                              
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General formula for fission widths of resonances 

• Fine structure fission widths 

 

 

 

 with remaining class-II fission width 

 [1 - Γλ(II), μ'ν(II)/ (Γλ(II), μ'ν(II+ Γλ(II), C)] Γλ(II), μ'ν(II)   

  

 (this is component for transition 
state  μ’νII) 

• This formula is approximate.  

• General  prescription: 

 Use R-matrix parameters  for   

 Use General formula  for  

( ) ( )

2 2

( ) ( ) ( )2 ( ) ( ) / 4
I

II C II FI
F

II II C II F
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 



   

 
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    

• Blue : S-matrix pole fission widths; 
Red : from hypothesis formula; 

       Green:  R-matrix fission widths.  
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Γ(II,C) = 4 

Γ(II,F) = 32 

II IIf c   

II IIf c   

(Notes) 

(Note: this is component for transition state  μ’ν
II

)  

• This formula is too simplified, however.  Some calculations of S-matrix pole fission widths from R-matrix fission width 

Lorentzians (width comprising only coupling) are shown below. 
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Statistical fluctuations of widths: effect on average cross-sections 

• Possible expansion of Internal Eigenstates 

                                         Χλ = Σcp Cλ,cp φc up(rc ) 

      where φc  is state of internal excitation and up is state of single neutron motion in 
field of residual nucleus  

 Incident neutron channel is  

                                                       ~φ0uq(r0)                                                 

 Value of Xλ at channel radius r0 = a0 is the reduced neutron width amplitude: 

                                           γλ,0q ̴  Cλ,0q uq(a0) 

• For high density of states (CN states) expectation value of Cλ,0q
2 ̴  Dλ/Dsp 

       Distribution of Cλ,0q → gaussian with zero mean. 

 ●     Hence, distribution of reduced widths x = γλ,0q 2 is the Porter-Thomas form 

 

 

 

 The non-uniform distribution affects averaging of cross-sections over resonances. 
 

 

 

1
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Statistical fluctuations of widths: effect on average cross-
sections contd. 

• Porter-Thomas distribution applies to every individual channel.  

• Distribution of the sum y = Σn xn is 

 

 

 

 This is the χ2 distribution with n degrees of freedom. (P-T is the member with n =1) 

 Variance is 

 

● Total capture width comprises large number of 1ry transitions. Variance small. 

● Fission widths through a single channel has  Porter-Thomas distribution. 

● The Hauser-Feshbach expression for average cross-sections has to be modified to 
take account of these width distributions. 

/2

( 2)/21
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2var( ) 2 /y y n

(Notes) 

• Porter-Thomas distribution applies to every individual channel.  

• For the sum of group of n uncorrelated channels of equal mean reduced width, the distribution of the sum y = Σ
n 

x
n
 is 

•                                              
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( ) exp

( / 2) 2 2

n

nn ny
p y y dy

n y y
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 This is the χ
2

 distribution with n degrees of freedom. (P-T is the member with n =1) 

 Its variance is 

                                                                                     

 
2var( ) 2 /y y n  

● The capture width for all but the lightest nuclei is composed of a large number primary transitions. It is therefore found and 

expected that it will fluctuate very little from resonance to resonance.  

● Fission widths through a single saddle point transition state (channel) will have a Porter-Thomas distribution. 

● The Hauser-Feshbach expression for average cross-sections has to be modified to take account of these width distributions.  
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Statistical fluctuations of widths: effect on average 
cross-sections (contd. 2) 

• This is usually denoted by multiplying the core Hauser-Feshbach term by a 
fluctuation factor Sab thus: 

 

 

 

 Ta etc. being the usual transmission coefficients expressed in terms of average 
width                              . 

● For some cases of few channels and (constant) capture width, S can be calculated 
analytically. In general, however it is reduced to an integral in one variable, which 
can be calculated numerically.  

 In  reactions that are dominated by a very few channels the fluctuation factors can 
be as low as ~ 0.7.  

 For elastic scattering with many competing reactions  Snn can approach 3. 

a b
ab ab

T T

T
 S

2 /c cT D 
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Averaging over Intermediate Structure 

• Uniform picket fence model. 

 

 

 

 

 With no width fluctuations the average fission cross-section is: 

 

 

 

 

 

 TI is total class-I transmission coefficients ; 

  TA , TB are inner and outer barrier transmission coefficients,  

 TF = TA TB / (TA + TB ) is the statistical fission transmission coefficient.  

(Notes) 

• Uniform picket fence model. 

 Even in the case when there are no width fluctuations the intermediate resonances lower the average fission cross-section below 

the Hauser-Feshbach value. In the exact expression for the cross-section in this model, T
I
 is the sum of all class-I transmission 

coefficients ; T
A
 , T

B
 are inner and outer barrier transmission coefficients, T

F
 = T

A
 T

B
 / (T

A
 + T

B
 ) is the statistical transmission 

coefficient. This expression is radically different from Hauser-Feshbach for low T
A
 and T

B
 but asymptotically approaches it as 

the barrier coefficients tend to unity.  
 

 Ref.:  Lynn, J.E. and Back, B.B.,, J.Phys. A7, 395 (1974) 
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Averaging for different intermediate structure models 

• Fission probability in different models. (σCN is compound nucleus formation cross-
section).                    

 

 

  

/F F CNP  

Intermediate structure averaging 

Width fluctuations to be considered 
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Magnitude of width 
fluctuation effect 

Single channel both barriers.                                    Different model calculations for (t,pf) reaction   

Use convention of fluctuation factor  S  

 with UPF model: 

 

 

Contour diagram of S  (En = 10 keV) 

 

 

,nf nf UPF nf  S

Summary of fission cross-section theory for single (or 
few) specified transition states  

• Statistical model – only useful if channel nearly fully open. Should be used 
with fluctuation factor SII for distribution of inner and outer barrier class-II 

widths applied to TF . 

 

• Unified picket fence model – first approximation when energy is near or 
below barrier. As above, SII should be included in TF . 

 

• UPF model with fine structure fluctuation factors  SI applied. This is in 

principle a rather crude approximation but is fairly good in practice. 

 

• Full modeling of intermediate structure with class-II and class-I width and 
coupling matrix element fluctuations, class-II fission width spreading for 
fine structure poles; Monte Carlo averaging. 
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Deformation energy & transition states at inner barrier 

• Inner barrier: nuclear structure 
effects in deformation from 
cylindrical asymmetry.  

• Eigenvalues of deformed, asymmetric 
rotator as function of asymmetry 
parameter γ.  

(Notes) 

Ref.: Davidson, J.P., Collective Models of the Nucleus p.44 (academic, NY and London, 1968 
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Deformation energy & transition states at outer barrier 

• Outer barrier: deformation around 
octupole  symmetry. 

• Effect of octupole asymmetry on 
vibrational eigenstates 

(Notes) 

Ref.:  Moller, P. and Nix, J.R., Physics and Chemistry of Fission, Proc. Conf., Rochester, 1, 103 (IAEA, Vienna, 1974) 
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Adopted barrier transition states for 2-hump barrier 

• Inner barrier (even nucleus): 

• K π = 0+  - “ground”  

 + rotational band (J π = 2+, 4+…)  

 

● Gamma vibration, K π = 2+  - ~ 200keV 

 + rotational band (3+, 4+…)  

● Gamma vibrations, K π = 0+  , 4+ -  
~400 to 500 keV 

    + rotational band (2+, 4+…; 5+, 6+ resp. ) 

● Mass asymmetry vibration, K π = 0-  - 
~700keV 

 + rotational band (1-, 3-…)  

● Bending vibration, K π = 1-  - ~ 800keV 

 + rotational band (2-, 3-…)  

● Combinations of above  

• Outer barrier: 
• K π = 0+  - “ground”  
 + rotational band (J π = 2+, 4+…)  
 
● Mass asymmetry vibration, K π = 0-  

- ~100keV 
 + rotational band (1-, 3-…)  
● Gamma vibration, K π = 2+  - ~ 

800keV 
 + rotational band (3+, 4+…)  
● Gamma vibrations, K π = 0+ , 4+ - 

~1.5MeV   + rotational band (2+, 
4+…; 5+, 6+ resp. ) 

● Bending vibration, K π = 1-  - ~ 
800keV 

 + rotational band (2-, 3-…)  
● Combinations of above  

 

2 / 2 3.5keV
2 / 2 2.5keV
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Adopted transition states 

• Even nuclei: above energy gap (1-1.5 
MeV) 

• 2 quasi-particle states 

 These are calculated at appropriate 
deformation of inner or outer barrier 
(Nilsson diagrams for example) 

● Above energy gap transition states 
are becoming numerous and discrete 
counting is replaced by level density; 
our work uses computed 
combinatorial  model QPVR 

 (multi -quasi-particles +vibration and 
rotation bands) 

 
 

• Odd-A nuclei: from “ground” 

• 1 quasi-particle states 

 Calculated at appropriate 
deformation of inner or outer barrier 

● Above energy gap discrete state 
counting is replaced by level density 

 

 

● Odd-odd nuclei; 2-quasi-particle 
states from “ground” 

 

 

(Notes) 

Barrier level densities 

• Combinatorial model of Level Density, QPVR. 

    Combination of multi-quasi-particle states coupled to vibrations and rotations.  

  Calculated for a given nuclear deformation (primary well, inner barrier or  outer barrier). Pairing gap parameters may depend            

 on deformation. 

• The density of the combination states thus computed for normally deformed nuclei, using pairing gap pa rameters that are 

determined from nuclear mass differences, agree with neutron resonance spacings at the neutron separation energy within a 

factor of ±3 over the whole range of actinides. A small adjustment of the pairing gap parameter for each individual nuclide can 

bring agreement between calculation and neutron resonance data.  

• For barrier deformations, the pairing gap parameters are determined so that a reasonable fit to fission cross -sections over the 

higher energy ranges can be obtained. (In our presen t work we are modelling the inner barrier level density, and fitting the 

outer barrier density to the fission cross-section. 

 

Ref.: Bouland, O., Lynn. J.E. and Talou, P. Phys.Rev, C88, 054612 (2013)  
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Example: Pu-240+n 

• Fissionable nuclide 
• Barrier level densities used:- Blue rhomboids - 

Inner barrier, calculated with Δp = 0.95 MeV, Δn = 
0.75 MeV 

• Red squares - Outer Barrier, fitted to cross-section; 
can be modeled approx. with Δp = 1 MeV, Δn = 0.85 
MeV 

• Black circle - LD from neutron resonance spacing 
of Pu-240+n: QPVR gives this with Δp = 0.71 MeV, 
Δn = 0.63 MeV 

 

 

• Fit to cross-section  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Blue rhomboids - ENDF-B7. 
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240-Pu(n,f) - ENDF-B7, 
AVXSF23, V(A)=5.91, V(B) = 5.67 

Example B): Pu-239+n. 
 

• This is a fissile nucleus with barrier well 
below neutron separation energy. Therefore 
barrier heights are determined from Pu-
238(t,pF) 

 

 

 

 

 

 

 

 

 

 

 

• Barrier level densities 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 Inner barrier model; Δp = 1.0 MeV, Δn = 0.79 
MeV 

 Outer barrier fitted to cross-section, LD can 
be approximated by model with Δp = 1.1 
MeV, Δn = 0.9 MeV 
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Plutonium isotope summary 

 

• Fit to 239Pu(n,f) cross-section 

 

 

 

 

 

 

 

 

 
 

 

 

• Blue rhomboids - ENDF-B7 

• Red squares - AVXSF calculation 

 

• Note: Pairing gap parameters increase with 
deformation. 

 

• Barrier heights of Pu series: 

•  The Table below gives the best fit barrier 
heights to date for an extensive sequence of Pu 
isotopes 

 

CN   237   238   239   240   241   242   243   244  245 

 

 VA    5.6    5.8   6.05  5.65  5.91   5.4   5.88          5.59 

 VB   4.95  5.65  5.55  5.23  5.67   5.3   5.43         5.08 

  

• Note the overall trend of a maximum about A = 
240, but especially the odd-even staggering, 
which can be explained by pairing gap increasing 
with deformation, in agreement with analysis of 
barrier level densities. This pairing energy 
dependence is in qualitative agreement with 
theory of Dave Madland . 
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Other Barrier Forms: Th-region nuclides  

• Barrier topography: 

 

• Vibrational, intermediate 
and fine structure 
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Concluding Remarks 

• Phase 1: Liquid Drop Model + quantum and nuclear modifications 

  - barrier tunnelling 

  - Barrier transition states 

● Phase 2: Modification by shell effects in deformed nucleus 

  - Double-humped barriers for transuranic  nuclides 

  - Triple-humped barriers for lighter actinides 

  - intermediate resonance structure 

● Incorporation of Intermediate structure into formal R-matrix theory 

● Quantum chaos – averaging over resonance  structure 

● Above barrier cross-sections – level densities at barrier deformations 

 

    Status of present knowledge 

Good for:  analysis (elucidation of barrier properties) 

    interpolation, extrapolation of cross-sections (incg. capture, inelastic) 

     to new energy ranges and nuclides) 
 

 

 

Future Requirements and Prospects 

• Better knowledge of CN formation cross-sections  

• Coupled channels in inelastic scattering 

 

• Further development of microscopic and Möller-Nix theory of potential energy 
landscape in deformation space  

• Sound models and calculations of inertial tensor: 

  improvements of barrier tunnelling and penetration factors 

  improved estimates of barrier transition states  of collective type 

● Improved calculations of quasi-particle states and level densities at barrier 
deformations 

● Direct  modelling of coupling matrix elements and fission width amplitudes in R-
matrix formalism of intermediate resonances 
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(Notes) 

The present status of fission cross-section theory as described in these lectures is that it is a sound tool for analysis of fission 

cross-section and related data. As such it can be used for extracting important fission parameters with confidence, as shown by 

the work on the Pu isotopes. It can be used for interpolation and extrapolation of fission, capture and inelastic cross-sections, 

not only to other energy regions but to other nuclides. Examples include the 25 m isomer of U-235 and the fission cross-

section of  U-237. 

 

However, predictive capacity is limited by several areas of uncertainty. First is the compound nucleus formation cross-section. 

This is largely determined by optical model fitting to total and elastic scattering cross-sections. These, of course, contain the 

shape elastic cross-section as a major component, contributing to the uncertainty of interpretation. Unambiguous experimental 

information is available at higher energies (above 2 MeV or so) in the form of measurements of  non-elastic cross-sections 

(spherical shell transmission) but errors on these are not much better than 10-15%. We badly need much more accurate 

information  the CN cross-section because the accuracy with which we know this directly affects everything else. 

 

We also have a problem with the inelastic scattering to the lowest collective states of the residual nucleus. While we have some 

experimental knowledge in the nuclides of major technological importance, we are mainly dependent on coupled channel 

models. Enhanced inelastic scattering (above normal statistical model estimates) is usually termed direct inelastic scattering. 

However, some of this enhancement could also be described as a CN component correlated with elastic scattering. This could 

be elucidated by putting the coupled channel model into the R-matrix formalism. We need transmission coefficients from the 

coupled channel model with degree of correlation with the elastic scattering (this affects the averaging factor in Hauser-

Feshbach formalism) and background direct inelastic terms to improve our calculations of fission and related cross-sections. 

(Notes - continued) 

Beyond this, there are several basic aspects of fission itself to be explored and improved. The  potential energy landscape has 

been a subject of continuous study since the late 1960s and has shown impressive results both from the microscopic and 

Möller-Nix theory. So far the accuracy of barrier heights has not become sufficient for ab initio calculations of fission cross-

sections. For practically useful results this would have to be of the order of 100-200 keV, and this must be the aim. The next 

important requirement is for sound models and calculations of the inertial tensor. Not only would this greatly help the 

calculation of sub-barrier cross-sections, especially when combined with improved barrier topography, through the estimation 

of more realistic barrier penetrability parameters, but could also lead to much better estimates of collective transition state 

energies, which are at present largely guesswork. This in turn would help improve the estimation of the density of transition 

states at higher excitation energies. We can here anticipate also that the full pairing equations including blocking would be 

solved for the quasi-particle states. 

It may also be fruitful to discard our reliance on the statistical estimate of barrier transmission coefficient, and directly model 

the coupling matrix element in R-matrix theory. For this we would need to build the necessary vibrational states on improved 

potential energy landscapes and inertial tensors and would also require knowledge of the nucleon single-particle wavefunctions 

over a large region of deformation space.  

 

Most, if not all of these advances , will, of course equire considerable computer facilities. There is much interesting work to be 

done. 


